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DOUBLEEXPLOSION ABOVE A HEATED SURFACE 

V. A. Andrushchenko and 
M. V. Meshcheryakov 

UDC 533.6.011.72 

The Navier--Stokes equations are used to numerically solve a problem on the inter- 
action of a pair of spherical waves with one another and an underlying rigid sur- 
face covered by a layer of heated gas. A study is made of complex processes 
involving the irregular collision of primary and secondary shock waves, their 
interaction with thermal discontinuities, the accompanying formation of precur- 
sors, suspended shocks, vortices, etc. 

The interaction of shock waves (SW) has recently been a subject of intensive study 
in astrophysics, the theory of explosion, plasma physics, etc. The authors of [i, 2] exam- 
ined the collision of normal and oblique shocks, while a unidimensional problem on the 
direct collision of two plane shock waves was solved numerically [3]. The study [4] focused 
on the interaction of spherical SW's in a double explosion in which point explosions occur- 
red at the same point in space but at slightly different times. There has been little at- 
tention given to the more complicated effects which arise in the frontal collision of sphe- 
rical SW's, most of the studies having been experimental investigations conducted in labo- 
ratory [5] and full-scale [6] experiments. Such collisions have also been examined in connec- 
tion with experiments studying the interaction of laser sparks [7, 8]. Similar numerical 
problems were studied in [5, 7, 8] and were solved in two-dimensional formulations in [9]. 

In the present study, we examine the more complex problem of a double explosion above 
a hard surface in the presence of a thermal layer (TL) on the surface. Here, along with the 
frontal collision of spherical SW's, there is an interaction between the SW's and the sur- 
face, another interaction between the SW's and the TL, and interactions with reflected and 
secondary SW's./ 

i. We solved the problem of the interaction of two laser-induced explosions (the param- 
eters of whichi are close to the parameters examined in [7, 8]). The explosions occur simul- 
taneously on a single vertical line above a solid surface covered by a layer of heated gas 
formed either as a result of radiation from the explosions or as a result of independent 
heating (see [i0, ii]). 

As the mathematical model of the given physical process, we choose the system of Navier-- 
Stokes equations for a compressible heat-conducting gas in cylindrical coordinates (r, z) 
for the axisymmetric case. In dimensionless variables, this system has the form: 

, 
dr" p - - V P + ~  V($V'V) J r - ~ - v ( ~ d i v v )  , 

d T  

d~- -- (3' --  1) T div v +  9RePr V (kvT), 

dp d 0 ~. 
dt -- -- ?p div v + ?----~----. V(kVT), 9T, - -  + (v. V). 

Re Pr P = dt Ot 

(i) 
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7 The problem is solved in the region G={0~r~r0, 0~z~z0} (see Fig. i) The bound- 
ary conditions are as follows: 

r : O: u = OvlOr : OplOr : aT~Or = O, 

r = r o :  autOr = 8vlOr : Oplar : OTIOr : O, 

z = 0 :  u - - - - v : a T t O z = 0 ,  

z = Zo: 8u/Oz = v = OplOz = OT/Oz = O. 

The initial conditions (see Fig. i): 

in  a l :  t / =  ~1 (r, z), z) = ~)1 (r, z), p = p~  (r, z), T = T 1 (r, z); 

in Gu:u----ug(r, z), v-----v~(r, z), p = ] ) 2 (  , z), T = T ~ ( r ,  z); 

i n G s : u = v = 0 ,  p- - - - l ,  T----T3; 

in G/(G1UGgUG3): u = v = 0 ,  p = T = l .  

(2) 

Here and below, the subscript 1 corresponds to the bottom explosion, while the subscript 2 
corresponds to the top explosion; ~I(G z), u~(r, z) etc. are the solutions of the problem of 
a point explosion in a medium with back pressure [12]; T3 is the temperature of the gas 
in the TL. 

In introducing the dimensionless variables, we used the following as scales: thickness 
of the TL h (10 -3 m); time h~po/Po----, velocity fpo/po, density P0 (1.23 kg/m3); temperature 
T o (288 K); pressure P0 (1.05 x 10 s Pa) (the last three quantities are parameters of the 
undisturbed medium). 

The initial equations and the boundary and initial conditions contain the following 
dimensionless determining parameters: 

R o =  Roth, H I =  H~/E, H ~ =  H'2/h, p ~ = p i l p o ,  P z :  P~IPo, 

T3 = T'31To, Re = h ~ p o P o l  ~, Pr : ~pocp/k,  ? = cv lcv .  
(3) 

2. The above-formulated problem will be solved by means of an implicit two-step scheme 
involving branching with respect to the coordinate directions and functions (the space deriv- 
atives are written with central differences, while the time derivatives are written with 
backward differences). In the first step, the initial system of differential equations (i) 
is approximated by the difference scheme on lower and intermediate layers. The inertial and 
viscous terms, containing derivatives with respect to r, are written on the intermediate 
layer, while all other terms are written on the bottom layer. Conversely, in the transi- 
tion from the intermediate layer to the top layer, the corresponding terms in the z direc- 
tion are taken on the top layer. Thus, the solution of the initial two-dimensional system 
reduces to the solution of unidimensional systems. In the approximation of the resulting 
system of unidimensional equations, the inertial and viscous terms in the momentum equa- 
tions move to the top time layer, while pressure moves to the bottom layer. This procedure 
makes it possible to split the system of unidimensional equations and reduce its solution 
to the sequential solution of systems of algebraic equations for each sought function by 
the method of scalar trial run. 

The computation is performed by a through method using solution regularization operators 
and an increased number of grid nodes in the direction of SW propagation (the largest grids 
used in the calculations had dimensions of 201 • 122 nodes). 

3. Calculations were performed for the following values of the determining parameters 
(3): Re = 103; Pr = i; ~ = 1.4, T3 = 3.47; R 0 = 5; H l = 6; H= = 16; the parameters Pl and P2 
were varied as follows: I) Pl = 2.12; p2 = 2.12; p2 = 17 (variant i); 2) Pl = 2.12; p2 = 
6.2 (variant 2); 3) Pl = 6.2; P2 = 17 (variant 3). Variants 1-3 differed both in the 
absolute values of pressure at the wave fronts and their ratio K = P2/Pl. 
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Fig. i. Theoretical region (G), regions of 
gas distributed by the explosion (G l and G2), 
and the thermal layer (G3). z, r, mm. 
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Fig. 2. Contours of the hot central region 
of the bottom explosion according to the iso- 
therm T = 2.4 against the background of the 
vector field of velocity for the moment of 
time t = 26.3 ~sec. 

Let us discuss the results of the calculations. We will go into the greatest detail on 
the solution of variants 2 and 3. 

Immediately after the beginning of the collision of the SW's (t = 0.78 psec), pressure 
intensity at the contact on the symmetry axis increases to 19. The interaction occurs in a 
dense gas with a relatively low temperature, which results in the formation centers. Compari- 
son of these results with calculations performed in [3] by a unidimensional approach showed 
their satisfactory qualitative and quantitative agreement. In the initial stage of SW inter- 
ference -- with the angles between the fronts still being small -- the reflection is of a 
regular character. Mach interaction begins after passage of the critical angle. However, 
due to the large difference in the intensities of the colliding SW's (k = 8), the transi- 
tional Mach structure is formed only in variants 2 and 3, not variant 1 (see below). 

By t = 4 psec, the front of the strong top SW reaches the hot central zone of the bot- 
tom explosion and enters it. As soon as part of the SW front enters the heated low-density 
gas, its velocity increases significantly. This results in severe curvature of the initial- 
ly spherical configuration of the front. Meanwhile, pressure intensity drops behind the 
front, and the shock itself becomes more diffuse. This "lens" effects is familiar both from 
laboratory experiments on the interaction of laser sparks [7, 8] and from calculated data on 
the collision of SW's with thermals [i0]. By t = 8.7 psec, a secondary shock interaction oc- 
curs: inside the hot region, the greatly weakened top SW, moving downward (with the intensity 
P2 = 1.54), collides with the reflected (from the solid surface) bottom SW (with the inten- 
sity Pl = i.I). Due to ithe low amplitudes of the colliding shocks and their diffuseness, no 
appreciable interaction effects are seen in the hot gas. 

Now let us examine the manner in which the hot central region of the bottom explosion is 
affected by the intensive top SW which passes through it. Against the velocity background 
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(for the moment of time t = 26.3 Dsec), Fig. 2 shows the contours of this region (in accord- 
ance with the isotherm T = 2.4) for eight moments of time (numbers 1-8 correspond to t = 0; 
5.2; 6.9; 8.8; 10.5; 14; 26.3; 31.4 Dsec). A dashed line is used to identify contour 7, since 
it partly coincides with contour 8. It can be seen from the figure that during the time in- 
terval from 0 to 31.4 Dsec, the shock displaces the hot central region downward and trans- 
forms a thermal with radially escaping gas into a ring with a high-intensity vortical internal 
atmosphere (see curve 8 in Fig. 2 and the distribution of the vector field of velocities with- 
in it). The changes in the configuration of the hot central region under the influence of 
the SW are identical to those determined in calculations of the passage of a shock wave 
through a spherical thermal [13] (compare curves 1-6 in Fig. 2 with the curves in Fig. 5 in 
[13]). 

The configurational changes are also identical to the changes recorded in interference 
patterns in tests conducted in [8] with laser sparks (compare curves 1 and 7 in Fig. 2 with 
the external contours of the spark in the interference patterns in Fig. 3 from [8]). 

The dynamics of the process occurring with the hot region of the explosion (or the 
thermal) under the influence of the shock wave is similar to the dynamics of the process which 
occurs in the ascent of a thermal under the influence of gravitation. However, the former 
process occurs at a faster rate, which makes it possible to study the processes involved in 
the formation and motion of vortex rings in shock tubes -- with an intensive SW passing through 
a stationary thermal [14]. 

Parallel with the interaction of the fronts of the top and bottom explosions and the in- 
ternal hot zones (as well as interactions of the bottom SW with the central region of the top 
explosion), the front of the bottom explosion is reflected from the underlying surface and 
interacts with the TL. By the moment of time t = 3.8 ~sec, the regular reflection stage is 
changing over to an irregular stage and there is rapid growth of the Mach leg in the hot gas 
of the TL (due to the higher speed of sound in the hot gas). At t = 7 Dsec, the Mach leg 
becomes larger than the width of the TL h. Here, the conditions corresponding to the~crite- 
rion established by G. I. Taganov (see [i0]) are satisfied in the flow and a precursor is 
formed. Also, at the boundary marking the transition from the precursor to the undisturbed 
part of the leading edge of the bottom SW, splitting of the flow results in the formation of 
an oblique SW which is referred to as a suspended shock (a detailed analysis of the formation 
of the precursor and the suspended shock in the given situation was presented in [15]). 

Figure 3 shows distributions of isobars (in the lower part of the theoretical region, 
adjacent to the solid surface) for three moments of time (curve i corresponds to the moment 
t = 14 ~sec, 2 corresponds to 21.5 ~sec, and 3 corresponds to 31.4 ~sec). The precursor (SW -- 
A) and the suspended shock (SW- B) are clearly seen on curve i. A small part of the front 
of the bottom SW (SW -- C) remains directly above the suspended shock. The main part of this 
wave was "absorbed" by the top SW (SW - D) after the latter overtook it. By this moment, the 
top SW has already entered the TL but has not yet reached the surface. At t = 15 Dsec, it 
reaches the surface at the epicenter (r = z = O). Its intensity here is equal to 1.5. 

There is subsequently a fairly rapid changeover from regular to irregular reflection and 
Mach wave formation. By the moment t = 21.5 Dsec, the front of the top SW has overtaken the 
suspended shock behind the precursor and begun interacting with it (see curve 2 in Fig. 3). 
This ultimately leads to destruction of the latter. Calculations were performed in accord- 
ance with variant 1 up to t = 31.4 ~sec (see curve 3 in Fig. 3). For the reflected SW from 
the top explosion, the Taganov criterion is still not satisfied by this moment of time and a 
second precursor has not yet formed in the TL on the surface. The precursor formed by the 
reflected wave from the bottom explosion has the same property as the precursors encountered 
in the simpler problems studied in [i0, ii]: the angle they form with the underlying surface 
remains constant throughout the investigated time interval (see curves 1-3 in Fig. 3). 

Now let us examine the case of a weaker top SW (variant 2). In this case, K = 2.9. In 
contrast to the previous variant, here a transitional structure composed of a Mach SW and a 
suspended shock forms by the moment of time t = 3.6 Dsec in the region of SW intersection 
(the suspended shock is represented by configuration 1 in Fig. 4, which shows the distribu- 
tion of isobars for variant 2 at t = 14.6 Dsec). Also, oblique SW's -- suspended shock waves 
- -  are formed near the upper boundary of the hot central region of the bottom explosion in 
its interaction with the top SW (see configuration 2 in Fig. 4) and behind the precursor in 
the TL next to the surface (as in variant i, see configuration 3 in Fig. 4). 
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Fig. 3. Prefrontal distribution of isobars for 
variant i. 
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Fig. 4. Pattern of isobar distribution at t = 14.6 
psec for variant 2 (configurations 1-3 -- suspended 
shocks; curves 4 and 5 -- contours of the hot cen- 
tral regions of the bottom and top explosions, re- 
spectively). The arrows indicate the direction of 
motion of the shock fronts. 

We should also point out certain differences in the results of variants 1 and 2. In 
variant 2, while the top SW determines the form of the hot central region of the bottom ex- 
plosion (see curve 4 in Fig. 4, corresponding to the isotherm T = 2.4), the bottom SW (due 
to the lower intensity of the top wave) appreciably narrows the same region of the top ex- 
plosion (see curve 5 in Fig. 4, this curve also corresponding to the isotherm T = 2.4). 
Since the initial amplitude of the top SW in variant 2 is almost a third less than in variant 
I, it turns out to have a weaker effect on the lower hot region. However, although the dynam- 
ics of its!transformation into a vortex ring is qualitatively the same as in the first case, 
the entire process takes considerably longer and the ring is formed only by t = 45 Dsec (in 
variant i, the ring is formed by t = 28 Dsec). 

Rather intensive SW's undergo collision in variant 3 and, although the ratio of pres- 
sures at the fronts K = 2.74 is close to the corresponding parameter in variant 2 (K = 2.9), 
calculations show that, in the given problem, the results are significantly affected not only 
by K, but also by the absolute values of initial SW intensity. New effects not manifested in 
the two previous variants are seen in this variant. 

With the collision of the fronts, pressure on the symmetry axis z increases to 23.5 by 
the moment of time t = 0.5 ~sec. By the moment of significant separation of the SW fronts 
at t = 1.7 ~sec, the pressures on them are equal respectively to Pl = 7.6 and P2 = 12; Mach 
reflection is already realized in this case and a transitional wave -- the suspended shock -- 
has been formed. Thus, compared to variants 1 and 2, there is a stronger SW in variant 3 
and the process of reflection from the surface leads to the formation of a more powerful re- 
flected SW. The precursor has already been formed by the moment t = 5.5 psec, as has the 
suspended shock~behind it and above the TL. The top SW collides with the reflected bottom 
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Fig. 5. Pattern of distribution of frontal iso- 
bars and isotherms of the lower hot region against 
the background of the vector field of velocity at 
t = 37.5 Bsec for variant 3 (configurations 1 and 
2 -- suspended shocks). Shock wave A -- precursor 
formed by the front of the top explosion in the 
thermal layer. 

SW at t = 7 Bsec near the lower boundary of the hot region of the explosion. The amplitude 
of the waves are equal to Pl = 1.9 and P2 = 2.5 before the collision and Pl = 2.7 and P2 = 
4.2 (t = 7.6 Dsec) after the collision. The collision results in formation of a structure 
composed of a Mach SW and a suspended shock. No such structure was formed in the previous 
variants. 

The hot region of the bottom explosion acquires a unique configuration. The top SW com- 
presses it from above, while the reflected bottom SW (which is in this case a rather strong 
wave) compresses it from below. It ultimately (by the moment t = 7.6 ~sec) takes the form of 
an "ear" which is curved both above and below. 

The number of suspended shocks subsequently continues to increase: by t = 11.8 Bsec, a 
suspended shock is formed in the interaction of the top SW with the hot region of the lower 
explosion; by t = 14.9 Bsec, another suspended shock is formed in the interaction of the bot- 
tom SW with the hot region of the top explosion; by t = 18.3 ~sec, a third suspended shock is 
formed from the interaction of the reflected wave of the bottom explosion with its own hot 
region. By the moment t = 30.5 Dsec, most of the suspended shocks that have formed have com- 
bined to form a single main shock; the others have dissipated. 

As in the case of the bottom SW, the reflection of the top SW from the surface is initial- 
ly regular and then irregular. The Mach leg which is formed soon propagates beyond the TL. 
This is followed by the formation of a second precursor and an oblique SW -- the suspended 
shock above the TL. For the moment t = 35.7 Bsec, Fig. 5 shows the lower prefrontal isobar 
distribution: the second precursor (SW -- A) is quite evident, as is the suspended shock of 
the above-mentioned convergence (configuration i). The figure also shows the distribution 
of isotherms in the hot region of the bottom explosion (isotherms 3-5 correspond to the tem- 
peratures 2.37, 3.84, and 5.31). By this moment, the hot region of the bottom explosion has 
nearly been transformed into a ring in which intensive vortical motion is taking place (see 
the pattern of distribution of the vector field of velocity in Fig. 5). 

Variation of the temperature of the TL from i000 to 3500 K had no significant qualita- 
tive effect on the pattern of interaction of the two spherical SW's with one another or the 
surface. It should be noted that the temperature profile in the TL was assigned in accord- 
ance with empirical data reported in [16], although we examined different temperature profiles 
in the TL in test calculations. With retention of the "effective" thickness of the layer, the 
temperature profile in the TL also has no effect on the above-described interaction. As in 
[i0], in all of our calculations we obtained good agreement between the angle of inclination 

of the precursor to the surface and the angle obtained from the formula presented in [ii]: 
sin ~ = i/~-3, where T3 is the dimensionless temperature of the TL. Moreover, the angles 
of inclination of the precursors in the boundary TL were nearly the same for both the first 
and second SW's. 

The fronts of the SW's were identified in the through calculation with the use of the 
method of differential analyzers (see [17]). This method has proven effective in previous 
studies (see [I0], for example). 
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In conclusion, i we note that a check of the satisfaction of the conservation laws 
yielded maximum imbalances of 2.5% with respect to weight and 4.7% with respect to energy. 
The results of control calculations performed using a double grid were nearly the same as 
the main results. 

NOTATION 

t is time; r, z are cylindrical coordinates; v = (u, v) is velocity; p is density; T 
is temperature; p is pressure; p, k are absolute viscosity and thermal conductivity; G is 
the theoretical region; r 0 and z 0 are the dimensions of the theoretical region; r 0 and z 0 
are the dimensions of the theoretical region along the axes; G l and G 2 are the lower and 
upper regions enveloped by the explosion; u I, ~l P~, Tz; u2 v2, p~ are parameters of the 
medium in these regions; G3 is the thermal layer; T~ and T3 are the dimensional and dimen- 
sionless temperatures of the gas in the layer; R~ is the initial radius of explosion regions 
G l and G2; pl and p2 are the pressures at the fronts of the bottom and top shock waves at 
t = 0, respectively; p0, T o , and P0 are the density, pressure, and pressure of the undisturbed 
gas; h' and h are the dimensional and dimensionless thicknesses of the thermal layer; HI, H 1 
and H~, H2 are the dimensional and dimensionless heights of the centers of the bottom and 
top explosions; Re is the Reynolds number; Pr is the Prandtl number; y is the adiabatic ex- 
ponent; ~ is the angle between the precursor and the underlying surface. 
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